标记培训数据越来越成为部署机器学习系统的最大瓶颈。我们展示了Snorkel,这是首个同类系统,使用户无需手工标记任何培训数据即可培训最先进的模型。相反,用户编写表示任意启发式的标签函数,其可能具有未知的准确性和相关性。通过整合我们最近提出的最新机器学习范例 – 数据编程的第一个端到端实现,浮潜可以减少他们的输出而无需访问基本事实。我们根据过去一年与公司,机构和研究实验室合作的经验,提出了一个灵活的界面层来撰写标签功能。在用户研究中,主题专家建立的模型速度提高2.8倍,平均预测性能提高45倍。5%与7个小时的手工标签。我们在这个新设置中研究了建模折衷方案,并提出了一个优化器,用于实现折衷决策的自动化,从而可以实现每管线执行速度高达1.8倍的加速。在与美国退伍军人事务部和美国食品和药物管理局的两项合作中,以及代表其他部署的四个开源文本和图像数据集合,Snorkel提供的平均预测性能比先前的启发式方法提高了132%在大型手工培训集的预测性能平均3.60%之内。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 我们在这个新环境中研究建模折衷方案,并提出一个优化器来实现折衷决策的自动化,每个管道执行速度最高可达1.8倍。在与美国退伍军人事务部和美国食品和药物管理局的两项合作中,以及代表其他部署的四个开源文本和图像数据集合,Snorkel提供的平均预测性能比先前的启发式方法提高了132%在大型手工培训集的预测性能平均3.60%之内。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 我们在这个新环境中研究建模折衷方案,并提出一个优化器来实现折衷决策的自动化,每个管道执行速度最高可达1.8倍。在与美国退伍军人事务部和美国食品和药物管理局的两项合作中,以及代表其他部署的四个开源文本和图像数据集合,Snorkel提供的平均预测性能比先前的启发式方法提高了132%在大型手工培训集的预测性能平均3.60%之内。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 退伍军人事务部和美国食品和药物管理局,以及代表其他部署的四个开源文本和图像数据集,Snorkel提供的平均预测性能比先前的启发式方法提高了132%,平均降低了3.60%大型手工培训集的预测性能。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 退伍军人事务部和美国食品和药物管理局,以及代表其他部署的四个开源文本和图像数据集,Snorkel提供的平均预测性能比先前的启发式方法提高了132%,平均降低了3.60%大型手工培训集的预测性能。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 大型手工培训集预测性能的60%。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797 大型手工培训集预测性能的60%。PVLDB参考格式:A. Ratner,SH Bach,H. Ehrenberg,J. Fries,S. Wu,C. R’e。浮潜:快速培训数据创建与弱监督。PVLDB,11(3):xxxx-yyyy,2017. DOI:10.14778 / 3157794.3157797
Continue reading

ABSTRACT

Labeling training data is increasingly the largest bottleneck in deploying machine learning systems. We present Snorkel, a first-of-its-kind system that enables users to train stateof-the-art models without hand labeling any training data. Instead, users write labeling functions that express arbitrary heuristics, which can have unknown accuracies and correlations. Snorkel denoises their outputs without access to ground truth by incorporating the first end-to-end implementation of our recently proposed machine learning paradigm, data programming. We present a flexible interface layer for writing labeling functions based on our experience over the past year collaborating with companies, agencies, and research labs. In a user study, subject matter experts build models 2.8× faster and increase predictive performance an average 45.5% versus seven hours of hand labeling. We study the modeling tradeoffs in this new setting and propose an optimizer for automating tradeoff decisions that gives up to 1.8× speedup per pipeline execution. In two collaborations, with the U.S. Department of Veterans Affairs and the U.S. Food and Drug Administration, and on four open-source text and image data sets representative of other deployments, Snorkel provides 132% average improvements to predictive performance over prior heuristic approaches and comes within an average 3.60% of the predictive performance of large hand-curated training sets. PVLDB Reference Format: A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, C. R´e. Snorkel: Rapid Training Data Creation with Weak Supervision. PVLDB, 11 (3): xxxx-yyyy, 2017. DOI: 10.14778/3157794.3157797

Continue reading

1 什么是文本挖掘?

文本挖掘是信息挖掘的一个研究分支,用于基于文本信息的知识发现。文本挖掘的准备工作由文本收集、文本分析和特征修剪三个步骤组成。目前研究和应用最多的几种文本挖掘技术有:文档聚类、文档分类和摘要抽取。

2 什么是自然语言处理?

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究人与计算机之间用自然语言进行有效通信的理论和方法。融语言学、计算机科学、数学等于一体的科学。
自然语言处理原理:形式化描述-数学模型算法化-程序化-实用化
语音的自动合成与识别、机器翻译、自然语言理解、人机对话、信息检索、文本分类、自动文摘等。

3 常用中文分词?

中文文本词与词之间没有像英文那样有空格分隔,因此很多时候中文文本操作都涉及切词,这里整理了一些中文分词工具。
StanfordNLP(直接使用CRF 的方法,特征窗口为5。)汉语分词工具(个人推荐)

哈工大语言云

庖丁解牛分词

盘古分词  ICTCLAS(中科院)汉语词法分析系统

IKAnalyzer(Luence项目下,基于java的)

FudanNLP(复旦大学)

Continue reading

Enrique S´anchez-Villamil, Mikel L. Forcada, and Rafael C. Carrasco
Transducens
Departament de Llenguatges i Sistemes Inform`atics
Universitat d’Alacant
E-03071 Alacant
Abstract. A simple, robust sliding-window part-of-speech tagger is
presented and a method is given to estimate its parameters from an untagged
corpus. Its performance is compared to a standard Baum-Welchtrained
hidden-Markov-model part-of-speech tagger. Transformation into
a finite-state machine —behaving exactly as the tagger itself— is demonstrated.
1 Introduction

Continue reading

滑动窗口基础部分词性标注用于部分的语音标签文本。

自然语言高百分比的单词是超出上下文范围的单词可以分配多于一个部分的语音。这些含糊不清的单词的百分比通常在30%左右,尽管它在很大程度上取决于语言。解决这个问题在很多自然语言处理领域都非常重要例如,在机器翻译中,改变单词的词性可以显着改变其翻译。

基于滑动窗口的词性标注器是这样的程序,其通过查看词语周围的固定大小的“窗口”以被消除歧义,将单一词性分配给词的给定词汇形式。

这种方法的两个主要优点是:

正式定义[ 编辑]

是应用程序的一组语法标签,也就是说,可能被分配给一个词的所有可能标签的集合,并让

成为应用程序的词汇。

是形态分析的一个功能,它分配每个形态分析

它的一组可能的标签,

,这可以通过完整的词典或形态分析器来实现。

是集词类,在一般的将是一个分区

与每个限制

所有的话

将收到相同的一组标签,即每个单词类中的所有单词

Continue reading

SVD:

 

SVD算法详解

下面开始介绍SVD算法,假设存在以下user和item的数据矩阵:

这是一个极其稀疏的矩阵,这里把这个评分矩阵记为R,其中的元素表示user对item的打分,“?”表示未知的,也就是要你去预测的,现在问题来了:如何去预测未知的评分值呢?上一篇文章用SVD证明了对任意一个矩阵A,都有它的满秩分解:

Continue reading

1. 语料标注:
代表 HMM 分词

2. 词向量:
代表: one-hot
word2vec
3. 常用语文本的特征:
TF-IDF
目标相似词
PMI
4. 常用的机器学习关系抽取
关系分类, 命名实体识别
5. 科研方向的深度学习 CNN + RNN 在知识抽取上的应用方向

https://arxiv.org/pdf/1707.06690.pdf

https://github.com/xwhan/DeepPath

摘要
我们研究了在大规模知识图(KGs)中学习推理的问题。更具体地说,我们描述了一种用于学习多跳关系路径的新型强化学习框架:我们使用基于知识图嵌入的具有连续状态的基于策略的代理,其通过采样最有希望的关系来扩展它的KG向量空间路径。与之前的工作相比,我们的方法包括一个奖励功能,该功能考虑了准确性,多样性和效率。在实验上,我们表明,我们提出的方法胜过基于路径排序的算法和知识图嵌入方法Freebase和Never-Ending语言学习数据集。

1介绍

用于语音识别中声学建模的深度神经网络近年来,深度学习技术已经在各种分类和识别问题中获得了许多现成的结果(Krizhevsky et al。,2012; Hinton et al。,2012; Kim,2014)。然而,复杂的自然语言处理问题通常需要多个相互关联的决策,并且赋予深度学习模型以学习理性的能力仍然是一个具有挑战性的问题。为了处理没有明显答案的复杂查询,智能机器必须能够推理现有资源,并学会推断未知答案。

更具体地说,我们把我们的研究放在多跳推理的环境中,给出一个大的KG,这是学习显式推理公式的任务。例如,如果KG包含诸如Neymar为巴塞罗那出战的信念,而巴塞罗那在西甲联赛中,那么机器应该能够学习以下公式:playerPlaysForTeam(P,T)∧teamPlaysInLeague(T,L)⇒ playerPlaysInLeague(P,L)。在测试时间内,通过插入学习公式,系统应该能够自动推断一对实体之间的缺失链接。这种推理机可能会成为复杂QA系统的重要组成部分

近年来,路径排序算法(PRA)(Lao et al。,2010,2011a)成为大型幼儿园学习推理路径的一种有前途的方法。PRA使用基于重启的基于推理机制的随机游走来执行多个有界深度优先搜索过程来查找关系路径。加上基于弹性网络的学习,PRA然后使用监督式学习选择更合理的路径。然而,PRA在完全独立的空间中运作,这使得评估和比较KG中类似的实体和关系变得困难。
Continue reading

https://arxiv.org/pdf/1707.06690.pdf

https://github.com/xwhan/DeepPath

Abstract
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.1

1 Introduction

Deep neural networks for acoustic modeling in speech recognitionIn recent years, deep learning techniques have obtained many state-of-theart results in various classification and recognition problems (Krizhevsky et al., 2012; Hinton et al., 2012; Kim, 2014). However, complex natural language processing problems often require multiple inter-related decisions, and empowering deep learning models with the ability of learning to reason is still a challenging issue. To handle complex queries where there are no obvious answers, intelligent machines must be able to reason with existing resources, and learn to infer an unknown answer.

More specifically, we situate our study in the context of multi-hop reasoning, which is the task of learning explicit inference formulas, given a large KG. For example, if the KG includes the beliefs such as Neymar plays for Barcelona, and Barcelona are in the La Liga league, then machines should be able to learn the following formula: playerPlaysForTeam(P,T) ∧ teamPlaysInLeague(T,L) ⇒ playerPlaysInLeague(P,L). In the testing time, by plugging in the learned formulas, the system should be able to automatically infer the missing link between a pair of entities. This kind of reasoning machine will potentially serve as an essential components of complex QA systems

Continue reading